Search results
Results from the WOW.Com Content Network
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...
Pearson's chi-squared test or Pearson's test is a statistical test applied to sets of categorical data to evaluate how likely it is that any observed difference between the sets arose by chance. It is the most widely used of many chi-squared tests (e.g., Yates , likelihood ratio , portmanteau test in time series , etc.) – statistical ...
A chi-squared distribution constructed by squaring a single standard normal distribution is said to have 1 degree of freedom. Thus, as the sample size for a hypothesis test increases, the distribution of the test statistic approaches a normal distribution.
In statistics, minimum chi-square estimation is a method of estimation of unobserved quantities based on observed data. [1]In certain chi-square tests, one rejects a null hypothesis about a population distribution if a specified test statistic is too large, when that statistic would have approximately a chi-square distribution if the null hypothesis is true.
This reduces the chi-squared value obtained and thus increases its p-value. The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5.
Sample ratio mismatches can be detected using a chi-squared test. [3] Using methods to detect SRM can help non-experts avoid making discussions using biased data. [4] If the sample size is large enough, even a small discrepancy between the observed and expected group sizes can invalidate the results of an experiment. [5] [6]
There are several methods to derive chi-squared distribution with 2 degrees of freedom. Here is one based on the distribution with 1 degree of freedom.
There is nothing magical about a sample size of 1 000, it's just a nice round number that is well within the range where an exact test, chi-square test, and G–test will give almost identical p values. Spreadsheets, web-page calculators, and SAS shouldn't have any problem doing an exact test on a sample size of 1 000 . — John H. McDonald [2]