Search results
Results from the WOW.Com Content Network
first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first) step – the number of array elements in each (default 1)
In computer science, array is a data type that represents a collection of elements (values or variables), each selected by one or more indices (identifying keys) that can be computed at run time during program execution. Such a collection is usually called an array variable or array value. [1]
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
Thus, if we have a vector containing elements (2, 5, 7, 3, 8, 6, 4, 1), and we want to create an array slice from the 3rd to the 6th items, we get (7, 3, 8, 6). In programming languages that use a 0-based indexing scheme, the slice would be from index 2 to 5. Reducing the range of any index to a single value effectively eliminates that index.
The base index of an array can be freely chosen. Usually programming languages allowing n-based indexing also allow negative index values and other scalar data types like enumerations, or characters may be used as an array index. Using zero based indexing is the design choice of many influential programming languages, including C, Java and Lisp ...
Support for multi-dimensional arrays may also be provided by external libraries, which may even support arbitrary orderings, where each dimension has a stride value, and row-major or column-major are just two possible resulting interpretations. Row-major order is the default in NumPy [19] (for Python).
The fundamental idea behind array programming is that operations apply at once to an entire set of values. This makes it a high-level programming model as it allows the programmer to think and operate on whole aggregates of data, without having to resort to explicit loops of individual scalar operations.
By default, a Pandas index is a series of integers ascending from 0, similar to the indices of Python arrays. However, indices can use any NumPy data type, including floating point, timestamps, or strings. [4]: 112 Pandas' syntax for mapping index values to relevant data is the same syntax Python uses to map dictionary keys to values.