Ad
related to: gasoline nozzle diameter chart pdf download printable
Search results
Results from the WOW.Com Content Network
Gas nozzle with vapor recovery Vapor (or vapour ) recovery is the process of collecting the vapors of gasoline and other fuels, so that they do not escape into the atmosphere. This is often done (and sometimes required by law) at filling stations , to reduce noxious and potentially explosive fumes and pollution.
A gasoline pump or fuel dispenser is a machine at a filling station that is used to pump gasoline (petrol), diesel, or other types of liquid fuel into vehicles. Gasoline pumps are also known as bowsers or petrol bowsers (in Australia and South Africa ), [ 2 ] [ 3 ] petrol pumps (in Commonwealth countries), or gas pumps (in North America ).
Nozzles can be described as convergent (narrowing down from a wide diameter to a smaller diameter in the direction of the flow) or divergent (expanding from a smaller diameter to a larger one). A de Laval nozzle has a convergent section followed by a divergent section and is often called a convergent-divergent (CD) nozzle ("con-di nozzle ...
Avgas is often dyed and is dispensed from nozzles with a diameter of 40 mm (49 mm in the United States). [30] [31] Jet fuel is clear to straw-colored and is dispensed from a special nozzle, called a J spout or duckbill, that has a rectangular opening larger than 60 mm diagonally, so as not to fit into avgas ports. However, some jet and other ...
Examples include fuel injectors for gasoline and diesel engines, atomizers for jet engines (gas turbines), [12] atomizers for injecting heavy fuel oil into combustion air in steam boiler injectors, and rocket engine injectors. Drop size is critical because the large surface area of a finely atomized spray enhances fuel evaporation rate.
Beyond this point the nozzle diameter becomes the biggest diameter and starts to incur increasing drag. Nozzles are thus limited to the installation size and the loss in thrust incurred is a trade off with other considerations such as lower drag, less weight. Examples are the F-16 at Mach 2.0 [21] and the XB-70 at Mach 3.0. [22]
The gas flow rate is constant (i.e., steady) during the period of the propellant burn. The gas flow is non-turbulent and axisymmetric from gas inlet to exhaust gas exit (i.e., along the nozzle's axis of symmetry). The flow is compressible as the fluid is a gas. As the combustion gas enters the rocket nozzle, it is traveling at subsonic velocities.
is the density of the gas (kg/m 3) is the temperature of the gas (K) is the cross sectional area of the nozzle at the point of interest (m 2) is the cross sectional area of the nozzle at the sonic point, or the point where gas velocity is Mach 1 (m 2). Ideally this will occur at the nozzle throat.
Ad
related to: gasoline nozzle diameter chart pdf download printable