enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sudoku solving algorithms - Wikipedia

    en.wikipedia.org/wiki/Sudoku_solving_algorithms

    A Sudoku starts with some cells containing numbers (clues), and the goal is to solve the remaining cells. Proper Sudokus have one solution. [1] Players and investigators use a wide range of computer algorithms to solve Sudokus, study their properties, and make new puzzles, including Sudokus with interesting symmetries and other properties.

  3. Mathematics of Sudoku - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_Sudoku

    The general problem of solving Sudoku puzzles on n 2 ×n 2 grids of n×n blocks is known to be NP-complete. [8] A puzzle can be expressed as a graph coloring problem. [9] The aim is to construct a 9-coloring of a particular graph, given a partial 9-coloring. The Sudoku graph has 81 vertices, one vertex for each cell.

  4. Sudoku code - Wikipedia

    en.wikipedia.org/wiki/Sudoku_code

    Tanner graph of a Sudoku. denotes the entries of the Sudoku in row-scan order. denotes the constraint functions: =, …, associated with rows, =, …, associated with columns and =, …, associated with the sub-grids of the Sudoku.. There are several possible decoding methods for sudoku codes. Some algorithms are very specific developments for Sudoku codes. Several methods are described in ...

  5. Backtracking - Wikipedia

    en.wikipedia.org/wiki/Backtracking

    A Sudoku solved by backtracking. Examples where backtracking can be used to solve puzzles or problems include: Puzzles such as eight queens puzzle, crosswords, verbal arithmetic, Sudoku [nb 1], and Peg Solitaire. Combinatorial optimization problems such as parsing and the knapsack problem.

  6. Sudoku - Wikipedia

    en.wikipedia.org/wiki/Sudoku

    Many Sudoku solving algorithms, such as brute force-backtracking and dancing links can solve most 9×9 puzzles efficiently, but combinatorial explosion occurs as n increases, creating practical limits to the properties of Sudokus that can be constructed, analyzed, and solved as n increases.

  7. Dancing Links - Wikipedia

    en.wikipedia.org/wiki/Dancing_Links

    The Dancing Links algorithm solving a polycube puzzle. In computer science, dancing links (DLX) is a technique for adding and deleting a node from a circular doubly linked list. It is particularly useful for efficiently implementing backtracking algorithms, such as Knuth's Algorithm X for the exact cover problem. [1]

  8. Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.

  9. Sudoku graph - Wikipedia

    en.wikipedia.org/wiki/Sudoku_graph

    A graph coloring of the Sudoku graph using this number of colors (the minimum possible number of colors for this graph) can be interpreted as a solution to the puzzle. The usual form of a Sudoku puzzle, in which some cells are filled in with symbols and the rest must be filled in by the person solving the puzzle, corresponds to the precoloring ...