Search results
Results from the WOW.Com Content Network
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
BIRCH (balanced iterative reducing and clustering using hierarchies) is an algorithm used to perform connectivity-based clustering for large data-sets. [7] It is regarded as one of the fastest clustering algorithms, but it is limited because it requires the number of clusters as an input.
Since algorithms that produce clusters with low intra-cluster distances (high intra-cluster similarity) and high inter-cluster distances (low inter-cluster similarity) will have a low Davies–Bouldin index, the clustering algorithm that produces a collection of clusters with the smallest Davies–Bouldin index is considered the best algorithm ...
The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri
The HCS (Highly Connected Subgraphs) clustering algorithm [1] (also known as the HCS algorithm, and other names such as Highly Connected Clusters/Components/Kernels) is an algorithm based on graph connectivity for cluster analysis. It works by representing the similarity data in a similarity graph, and then finding all the highly connected ...
In statistics and data mining, affinity propagation (AP) is a clustering algorithm based on the concept of "message passing" between data points. [1] Unlike clustering algorithms such as k-means or k-medoids, affinity propagation does not require the number of clusters to be determined or estimated before running the algorithm.
A trivial implementation of the algorithm to construct the UPGMA tree has () time complexity, and using a heap for each cluster to keep its distances from other cluster reduces its time to (). Fionn Murtagh presented an O ( n 2 ) {\displaystyle O(n^{2})} time and space algorithm.
In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.