Search results
Results from the WOW.Com Content Network
RNA-Seq can also be used to determine exon/intron boundaries and verify or amend previously annotated 5' and 3' gene boundaries. Recent advances in RNA-Seq include single cell sequencing, bulk RNA sequencing, [6] 3' mRNA-sequencing, in situ sequencing of fixed tissue, and native RNA molecule sequencing with single-molecule real-time sequencing. [7]
Currently RNA-Seq relies on copying RNA molecules into cDNA molecules prior to sequencing; therefore, the subsequent platforms are the same for transcriptomic and genomic data. Consequently, the development of DNA sequencing technologies has been a defining feature of RNA-Seq. [ 78 ] [ 80 ] [ 81 ] Direct sequencing of RNA using nanopore ...
At this step, sequencing reads whose quality have been improved are mapped to a reference genome using alignment tools like BWA [17] for short DNA sequence reads, minimap [18] for long read DNA sequences, and STAR [19] for RNA sequence reads. The purpose of mapping is to find the origin of any given read based on the reference sequence.
RNA Seq Experiment. The single-cell RNA-seq technique converts a population of RNAs to a library of cDNA fragments. These fragments are sequenced by high-throughput next generation sequencing techniques and the reads are mapped back to the reference genome, providing a count of the number of reads associated with each gene. [13]
Normally, in a traditional RNA-seq, microarray, or SAGE experiment RNA is extracted from a biological sample such as cultured cells, and the RNA is analyzed using the chosen method. The data obtained from such an experiment corresponds to abundance of RNA under the given experimental conditions at the time of harvest.
RNA-seq is emerging (2013) as the method of choice for measuring transcriptomes of organisms, though the older technique of DNA microarrays is still used. [1] RNA-seq measures the transcription of a specific gene by converting long RNAs into a library of cDNA fragments. The cDNA fragments are then sequenced using high-throughput sequencing ...
The binding of the ADAR2 enzyme to the RNA timestamp initiates the gradual conversion of adenosine to inosine molecules. Over time, these edits accumulate and are then read through RNA-seq. This technology allows us to glean cell-type specific temporal information associated with RNA-seq data, that until now, has not been accessible. [1]
In eukaryotes, making phylogenetic inferences using RNA is complicated by alternative splicing, which produces multiple transcripts from a single gene. As such, a variety of approaches may be used to improve phylogenetic inference using transcriptomic data obtained from RNA-Seq and processed using computational phylogenetics.