Search results
Results from the WOW.Com Content Network
The overall heat transfer coefficient is a measure of the overall ability of a series of conductive and convective barriers to transfer heat. It is commonly applied to the calculation of heat transfer in heat exchangers , but can be applied equally well to other problems.
describes heat transfer across a surface = Here, is the overall heat transfer coefficient, is the total heat transfer area, and is the minimum heat capacity rate. To better understand where this definition of NTU comes from, consider the following heat transfer energy balance, which is an extension of the energy balance above:
Specific enthalpy, symbolized by h, is the sum of the internal (heat) energy of the moist air in question, including the heat of the air and water vapor within. Also called heat content per unit mass. In the approximation of ideal gases, lines of constant enthalpy are parallel to lines of constant WBT.
The lumped capacitance solution that follows assumes a constant heat transfer coefficient, as would be the case in forced convection. For free convection, the lumped capacitance model can be solved with a heat transfer coefficient that varies with temperature difference. [8]
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes.
where A is the surface area, is the temperature driving force, Q is the heat flow per unit time, and h is the heat transfer coefficient. Within heat transfer, two principal types of convection can occur: Forced convection can occur in both laminar and turbulent flow.
The basic mechanisms and mathematics of heat, mass, and momentum transport are essentially the same. Among many analogies (like Reynolds analogy , Prandtl–Taylor analogy) developed to directly relate heat transfer coefficients, mass transfer coefficients and friction factors, Chilton and Colburn J-factor analogy proved to be the most accurate.
Traditional response tests apply a constant heat flux to the pumped water, however the newer "constant temperature" method, which holds the outflow water at a constant temperature, has been shown to have many advantages, including shortening the test period and in improving the operating stability and test accuracy. [7]