Search results
Results from the WOW.Com Content Network
Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step. These two steps are repeated until convergence is reached.
In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.
In econometrics, the Arellano–Bond estimator is a generalized method of moments estimator used to estimate dynamic models of panel data.It was proposed in 1991 by Manuel Arellano and Stephen Bond, [1] based on the earlier work by Alok Bhargava and John Denis Sargan in 1983, for addressing certain endogeneity problems. [2]
Health technology is defined by the World Health Organization as the "application of organized knowledge and skills in the form of devices, medicines, vaccines, procedures, and systems developed to solve a health problem and improve quality of lives". [1]
They are a popular alternative to the likelihood-based generalized linear mixed model which is more at risk for consistency loss at variance structure specification. [5] The trade-off of variance-structure misspecification and consistent regression coefficient estimates is loss of efficiency, yielding inflated Wald test p-values as a result of ...
Health information technology (HIT) is "the application of information processing involving both computer hardware and software that deals with the storage, retrieval, sharing, and use of health care information, health data, and knowledge for communication and decision making". [8]
Affection influences learners' learning state. Using affective computing technology, computers can judge the learners' affection and learning state by recognizing their facial expressions. In education, the teacher can use the analysis result to understand the student's learning and accepting ability, and then formulate reasonable teaching plans.
A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters