Search results
Results from the WOW.Com Content Network
In engineering, a transfer function (also known as system function [1] or network function) of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. [2] [3] [4] It is widely used in electronic engineering tools like circuit simulators and control systems.
In control system theory, and various branches of engineering, a transfer function matrix, or just transfer matrix is a generalisation of the transfer functions of single-input single-output (SISO) systems to multiple-input and multiple-output (MIMO) systems. [1] The matrix relates the outputs of the system to its inputs.
The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below:
A basic closed loop control system, using unity negative feedback. C(s) and G(s) denote compensator and plant transfer functions, respectively. Let () and () denote the plant and controller's transfer function in a basic closed loop control system written in the Laplace domain using unity negative feedback.
The definition of a closed loop control system according to the British Standards Institution is "a control system possessing monitoring feedback, the deviation signal formed as a result of this feedback being used to control the action of a final control element in such a way as to tend to reduce the deviation to zero." [12]
A plant in control theory is the combination of process and actuator.A plant is often referred to with a transfer function (commonly in the s-domain) which indicates the relation between an input signal and the output signal of a system without feedback, commonly determined by physical properties of the system.
The usual objective of control theory is to control a system, often called the plant, so its output follows a desired control signal, called the reference, which may be a fixed or changing value. To do this a controller is designed, which monitors the output and compares it with the reference.
In cybernetics and control theory, a setpoint (SP; [1] also set point) is the desired or target value for an essential variable, or process value (PV) of a control system, [2] which may differ from the actual measured value of the variable.