Search results
Results from the WOW.Com Content Network
In engineering, a transfer function (also known as system function [1] or network function) of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. [2] [3] [4] It is widely used in electronic engineering tools like circuit simulators and control systems.
In control system theory, and various branches of engineering, a transfer function matrix, or just transfer matrix is a generalisation of the transfer functions of single-input single-output (SISO) systems to multiple-input and multiple-output (MIMO) systems. [1] The matrix relates the outputs of the system to its inputs.
A basic closed loop control system, using unity negative feedback. C(s) and G(s) denote compensator and plant transfer functions, respectively. Let () and () denote the plant and controller's transfer function in a basic closed loop control system written in the Laplace domain using unity negative feedback.
The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below:
A pure feed-forward system is different from a homeostatic control system, which has the function of keeping the body's internal environment 'steady' or in a 'prolonged steady state of readiness.' A homeostatic control system relies mainly on feedback (especially negative), in addition to the feedforward elements of the system.
In control theory and signal processing, a linear, time-invariant system is said to be minimum-phase if the system and its inverse are causal and stable. [1] [2]The most general causal LTI transfer function can be uniquely factored into a series of an all-pass and a minimum phase system.
In control theory, a proper transfer function is a transfer function in which the degree of the numerator does not exceed the degree of the denominator. A strictly proper transfer function is a transfer function where the degree of the numerator is less than the degree of the denominator.
The usual objective of control theory is to control a system, often called the plant, so its output follows a desired control signal, called the reference, which may be a fixed or changing value. To do this a controller is designed, which monitors the output and compares it with the reference.