enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermal expansion - Wikipedia

    en.wikipedia.org/wiki/Thermal_expansion

    The control of thermal expansion in brittle materials is a key concern for a wide range of reasons. For example, both glass and ceramics are brittle and uneven temperature causes uneven expansion which again causes thermal stress and this might lead to fracture. Ceramics need to be joined or work in concert with a wide range of materials and ...

  3. Convection - Wikipedia

    en.wikipedia.org/wiki/Convection

    This is because its density varies nonlinearly with temperature, which causes its thermal expansion coefficient to be inconsistent near freezing temperatures. [37] [38] The density of water reaches a maximum at 4 °C and decreases as the temperature deviates. This phenomenon is investigated by experiment and numerical methods. [36]

  4. Convection (heat transfer) - Wikipedia

    en.wikipedia.org/wiki/Convection_(Heat_transfer)

    Two types of convective heat transfer may be distinguished: Free or natural convection: when fluid motion is caused by buoyancy forces that result from the density variations due to variations of thermal ±temperature in the fluid. In the absence of an internal source, when the fluid is in contact with a hot surface, its molecules separate and ...

  5. Thermal stress - Wikipedia

    en.wikipedia.org/wiki/Thermal_stress

    Temperature gradients, thermal expansion or contraction and thermal shocks are things that can lead to thermal stress. This type of stress is highly dependent on the thermal expansion coefficient which varies from material to material. In general, the greater the temperature change, the higher the level of stress that can occur.

  6. Adiabatic process - Wikipedia

    en.wikipedia.org/wiki/Adiabatic_process

    Expansion and cooling beyond the saturation vapor pressure is often idealized as a pseudo-adiabatic process whereby excess vapor instantly precipitates into water droplets. The change in temperature of an air undergoing pseudo-adiabatic expansion differs from air undergoing adiabatic expansion because latent heat is released by precipitation. [4]

  7. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/Joule–Thomson_effect

    In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.

  8. Thermal subsidence - Wikipedia

    en.wikipedia.org/wiki/Thermal_subsidence

    In geology and geophysics, thermal subsidence is a mechanism of subsidence in which conductive cooling of the mantle thickens the lithosphere and causes it to decrease in elevation. This is because of thermal expansion : as mantle material cools and becomes part of the mechanically rigid lithosphere, it becomes denser than the surrounding material.

  9. Mantle convection - Wikipedia

    en.wikipedia.org/wiki/Mantle_convection

    Mantle convection is the very slow creep of Earth's solid silicate mantle as convection currents carry heat from the interior to the planet's surface. [2] [3] Mantle convection causes tectonic plates to move around the Earth's surface. [4] The Earth's lithosphere rides atop the asthenosphere, and the two form the components of the upper mantle ...