Search results
Results from the WOW.Com Content Network
The Egyptians knew the correct formula for the volume of such a truncated square pyramid, but no proof of this equation is given in the Moscow papyrus. The volume of a conical or pyramidal frustum is the volume of the solid before slicing its "apex" off, minus the volume of this "apex":
A cone with a region including its apex cut off by a plane is called a truncated cone; if the truncation plane is parallel to the cone's base, it is called a frustum. [1] An elliptical cone is a cone with an elliptical base. [1] A generalized cone is the surface created by the set of lines passing through a vertex and every point on a boundary ...
For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56° as of August 2016 [7]) is 2π ⋅ 6371 2 | sin 90° − sin 66.56° | = 21.04 million km 2 (8.12 million sq mi), or 0.5 ⋅ | sin 90° − sin 66.56° | = 4.125% of the total surface area of the Earth ...
Graph of = /. Gabriel's horn is formed by taking the graph of =, with the domain and rotating it in three dimensions about the x axis. The discovery was made using Cavalieri's principle before the invention of calculus, but today, calculus can be used to calculate the volume and surface area of the horn between x = 1 and x = a, where a > 1. [6]
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.
The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m −1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),
The value 75.4 = 24 π, where 24 π substitutes for factor of 12 π in the formula for a volume of frustum of a cone encompassing a full tree using one base circumference, converting it to a volume formula that uses a basal circumference that is the average of circumferences C 1 and C 2.