Search results
Results from the WOW.Com Content Network
1 kmol of any ideal gas equals 22.414 Nm 3 of that gas at 0 °C and 1 atmosphere of absolute pressure ... and 1 lbmol of any ideal gas equals 379.482 scf of that gas at 60 °F and 1 atmosphere of absolute pressure. Notes: kmol = kilomole or kilogram mole; lbmol = pound mole
For example, the conversion factor between a mass fraction of 1 ppb and a mole fraction of 1 ppb is about 4.7 for the greenhouse gas CFC-11 in air (Molar mass of CFC-11 / Mean molar mass of air = 137.368 / 28.97 = 4.74). For volume fraction, the suffix "V" or "v" is sometimes appended to the parts-per notation (e.g. ppmV, ppbv, pptv).
As an example, a measured NO x concentration of 45 ppmv in a dry gas having 5 volume % O 2 is: 45 × ( 20.9 - 3 ) ÷ ( 20.9 - 5 ) = 50.7 ppmv of NO x. when corrected to a dry gas having a specified reference O 2 content of 3 volume %. Note: The measured gas concentration C m must first be corrected to a dry basis before using the above equation.
11.6 g of NaCl is dissolved in 100 g of water. The final mass concentration ρ(NaCl) is ρ(NaCl) = 11.6 g / 11.6 g + 100 g = 0.104 g/g = 10.4 %. The volume of such a solution is 104.3mL (volume is directly observable); its density is calculated to be 1.07 (111.6g/104.3mL) The molar concentration of NaCl in the solution is therefore
With this conversion from SCCM to kg/s, one can then use available unit calculators to convert kg/s to other units, [5] such as g/s of the CGS system, or slug/s. Based on the above formulas, the relationship between SCCM and molar flow rate in kmol/s is given by
inhaled osmium tetroxide is immediately dangerous to life or health (1 mg Os/m 3) [13] 10 −8: 10 −7: 101 nM: hydronium and hydroxide ions in pure water at 25 °C (pK W = 13.99) [14] 10 −6: μM: 10 −5: 10 −4: 180–480 μM: normal range for uric acid in blood [10] 570 μM: inhaled carbon monoxide induces unconsciousness in 2–3 ...
A solution with 1 g of solute dissolved in a final volume of 100 mL of solution would be labeled as "1%" or "1% m/v" (mass/volume). This is incorrect because the unit "%" can only be used for dimensionless quantities. Instead, the concentration should simply be given in units of g/mL.
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.