Search results
Results from the WOW.Com Content Network
The modified compression field theory (MCFT) is a general model for the load-deformation behaviour of two-dimensional cracked reinforced concrete subjected to shear. It models concrete considering concrete stresses in principal directions summed with reinforcing stresses assumed to be only axial.
ACI 318 Building Code Requirements for Structural Concrete provides minimum requirements necessary to provide public health and safety for the design and construction of structural concrete buildings. [6] It is issued and maintained by the American Concrete Institute. [7] The latest edition of the code is ACI 318-19.
The ACI Building Code Requirements put the following restrictions on amount of spiral reinforcement. ACI Code 7.10.4.2: For cast-in-place construction, size of spirals shall not be less than 3/8 in. diameter. ACI Code 7.10.4.3: Clear spacing between spirals shall not exceed 3 in., nor be less than 1in.
A pronounced energetic size effect occurs in shear, torsional and punching failures of reinforced concrete, in pullout of anchors from concrete, in compression failure of slender reinforced concrete columns and prestressed concrete beams, in compression and tensile failures of fiber-polymer composites and sandwich structures, and in the ...
The derivation of the maximum arching moment of resistance of laterally restrained concrete bridge deck slabs utilised Rankin's [21] idealised elastic-plastic stress-strain criterion for concrete, valid for concrete cylinder strengths up to at least 70N/mm 2, which he had derived on the basis of Hognestad, Hanson and McHenry's [23] ultimate ...
In structural and mechanical engineering, the shear strength of a component is important for designing the dimensions and materials to be used for the manufacture or construction of the component (e.g. beams, plates, or bolts). In a reinforced concrete beam, the main purpose of reinforcing bar (rebar) stirrups is to increase the shear strength.
Mohr–Coulomb theory is a mathematical model (see yield surface) describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress. Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope.
Whittaker has been engaged in the development of codes, standards and guidelines in the United States since the late 1980s, including the National Earthquake Hazards Reduction Program Recommended Provisions, the American Society of Civil Engineers/Structural Engineering Institute (ASCE/SEI) Standards 4, 7, 41, 43, and 59, and American Concrete Institute (ACI) Code 349.