Search results
Results from the WOW.Com Content Network
CPU time (or process time) is the amount of time that a central processing unit (CPU) was used for processing instructions of a computer program or operating system. CPU time is measured in clock ticks or seconds. Sometimes it is useful to convert CPU time into a percentage of the CPU capacity, giving the CPU usage.
For example, one can interpret a load average of "1.73 0.60 7.98" on a single-CPU system as: During the last minute, the system was overloaded by 73% on average (1.73 runnable processes, so that 0.73 processes had to wait for a turn for a single CPU system on average). During the last 5 minutes, the CPU was idling 40% of the time, on average.
Occasionally a CPU designer can find a way to make a CPU with better overall performance by improving one of the aspects of performance, presented below, without sacrificing the CPU's performance in other areas. For example, building the CPU out of better, faster transistors. However, sometimes pushing one type of performance to an extreme ...
time (Unix) - can be used to determine the run time of a program, separately counting user time vs. system time, and CPU time vs. clock time. [1] timem (Unix) - can be used to determine the wall-clock time, CPU time, and CPU utilization similar to time (Unix) but supports numerous extensions.
where U is the utilization factor, C i is the computation time for process i, T i is the release period (with deadline one period later) for process i, and n is the number of processes to be scheduled. For example, U ≤ 0.8284 for two processes. When the number of processes tends towards infinity, this expression will tend towards:
Using the response time formula (R=S/(1-U), R=response time, S=service time, U=load), response times can be calculated and calibrated with the results of the performance tests. Analytical performance modeling allows evaluation of design options and system sizing based on actual or anticipated business use.
Changes in response time can also be predicted by the model. For example, in a simple case with a single resource, the response time formula: R=S/(1-U) where R=response_time, S=service_time, U=utilization, will calculate the response time as the utilization of that resource varies between 0=0% busy to 1=100% busy. [2]
Example components were CPU, tape drives, hard disks, card-readers, and printers. Computers that predominantly used peripherals were characterized as I/O bound . Establishing that a computer is frequently CPU-bound implies that upgrading the CPU or optimizing code will improve the overall computer performance.