enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Diffusion current - Wikipedia

    en.wikipedia.org/wiki/Diffusion_current

    Diffusion current is a current in a semiconductor caused by the diffusion of charge carriers (electrons and/or electron holes). This is the current which is due to the transport of charges occurring because of non-uniform concentration of charged particles in a semiconductor.

  3. Diffusion - Wikipedia

    en.wikipedia.org/wiki/Diffusion

    This process generates current, referred to as diffusion current. Diffusion current can also be described by Fick's first law = /, where J is the diffusion current density (amount of substance) per unit area per unit time, n (for ideal mixtures) is the electron density, x is the position [length].

  4. Drift current - Wikipedia

    en.wikipedia.org/wiki/Drift_current

    The drift velocity, and resulting current, is characterized by the mobility; for details, see electron mobility (for solids) or electrical mobility (for a more general discussion). See drift–diffusion equation for the way that the drift current, diffusion current, and carrier generation and recombination are combined into a single equation.

  5. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    This diffusion current is governed by Fick's law: = where: F is flux. D e is the diffusion coefficient or diffusivity; is the concentration gradient of electrons; The diffusion coefficient for a charge carrier is related to its mobility by the Einstein relation.

  6. Chronoamperometry - Wikipedia

    en.wikipedia.org/wiki/Chronoamperometry

    D is the diffusion coefficient for species in cm 2 /s; t is the time in seconds. Under controlled-diffusion circumstances, the current-time plot reflects the concentration gradient of the solution near the electrode surface. The current is directly proportional to the concentration at the electrode surface.

  7. Haynes–Shockley experiment - Wikipedia

    en.wikipedia.org/wiki/Haynes–Shockley_experiment

    In semiconductor physics, the Haynes–Shockley experiment was an experiment that demonstrated that diffusion of minority carriers in a semiconductor could result in a current. The experiment was reported in a short paper by Haynes and Shockley in 1948, [1] with a more detailed version published by Shockley, Pearson, and Haynes in 1949.

  8. AOL Mail

    mail.aol.com/?offerId=netscapeconnect-en-us

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Theory of solar cells - Wikipedia

    en.wikipedia.org/wiki/Theory_of_solar_cells

    On the other hand, majority carriers are driven into the drift region by diffusion (resulting from the concentration gradient), which leads to the forward current; only the majority carriers with the highest energies (in the so-called Boltzmann tail; cf. Maxwell–Boltzmann statistics) can fully cross the drift region. Therefore, the carrier ...