enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal.

  3. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six ...

  4. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    By the secant-tangent theorem, the square of this tangent length equals the power of the point P in the circle C. This power equals the product of distances from P to any two intersection points of the circle with a secant line passing through P. The angle θ between a chord and a tangent is half the arc belonging to the chord.

  5. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .

  6. Inscribed angle - Wikipedia

    en.wikipedia.org/wiki/Inscribed_angle

    Equivalently, an inscribed angle is defined by two chords of the circle sharing an endpoint. The inscribed angle theorem relates the measure of an inscribed angle to that of the central angle subtending the same arc. The inscribed angle theorem appears as Proposition 20 in Book 3 of Euclid's Elements.

  7. Law of tangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_tangents

    In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a , b , and c are the lengths of the three sides of the triangle, and α , β , and γ are the angles opposite those three respective sides.

  8. Divine Proportions: Rational Trigonometry to Universal Geometry

    en.wikipedia.org/wiki/Divine_Proportions:...

    Well known results such as Heron's formula for calculating the area of a triangle from its side lengths, or the inscribed angle theorem in the form that the angles subtended by a chord of a circle from other points on the circle are equal, are reformulated in terms of quadrance and spread, and thereby generalized to arbitrary fields of numbers.

  9. On Spirals - Wikipedia

    en.wikipedia.org/wiki/On_Spirals

    Let the tangent at P cut the line perpendicular to OP at T. OT is the length of the circumference of the circle with radius OP. Archimedes had already proved as the first proposition of Measurement of a Circle that the area of a circle is equal to a right-angled triangle having the legs' lengths equal to the radius of the circle and the ...