enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross-multiplication - Wikipedia

    en.wikipedia.org/wiki/Cross-multiplication

    The method is also occasionally known as the "cross your heart" method because lines resembling a heart outline can be drawn to remember which things to multiply together. Given an equation like =, where b and d are not zero, one can cross-multiply to get

  3. Trachtenberg system - Wikipedia

    en.wikipedia.org/wiki/Trachtenberg_system

    The method for general multiplication is a method to achieve multiplications with low space complexity, i.e. as few temporary results as possible to be kept in memory. This is achieved by noting that the final digit is completely determined by multiplying the last digit of the multiplicands. This is held as a temporary result.

  4. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product is anticommutative (that is, a × b = − b × a) and is distributive over addition, that is, a × (b + c) = a × b + a × c. [1] The space together with the cross product is an algebra over the real numbers, which is neither commutative nor associative, but is a Lie algebra with the cross product being the Lie bracket.

  5. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    The grid method (or box method) is an introductory method for multiple-digit multiplication that is often taught to pupils at primary school or elementary school. It has been a standard part of the national primary school mathematics curriculum in England and Wales since the late 1990s.

  6. FOIL method - Wikipedia

    en.wikipedia.org/wiki/FOIL_method

    The FOIL method is a special case of a more general method for multiplying algebraic expressions using the distributive law. The word FOIL was originally intended solely as a mnemonic for high-school students learning algebra. The term appears in William Betz's 1929 text Algebra for Today, where he states: [2]

  7. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    This also relates to the handedness of the cross product; the cross product transforms as a pseudovector under parity transformations and so is properly described as a pseudovector. The dot product of two vectors is a scalar but the dot product of a pseudovector and a vector is a pseudoscalar, so the scalar triple product (of vectors) must be ...

  8. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    Since 9 = 10 − 1, to multiply a number by nine, multiply it by 10 and then subtract the original number from the result. For example, 9 × 27 = 270 − 27 = 243. This method can be adjusted to multiply by eight instead of nine, by doubling the number being subtracted; 8 × 27 = 270 − (2×27) = 270 − 54 = 216.

  9. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's method. In particular, if either exp {\displaystyle \exp } or log {\displaystyle \log } in the complex domain can be computed with some complexity, then that complexity is ...