enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital ring - Wikipedia

    en.wikipedia.org/wiki/Orbital_ring

    An orbital ring is a concept of an artificial ring placed around a body and set rotating at such a rate that the apparent centrifugal force is large enough to counteract the force of gravity. For the Earth , the required speed is on the order of 10 km/sec, [ citation needed ] compared to a typical low Earth orbit orbital speed of 7.9 km/sec.

  3. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    An orbital can be occupied by a maximum of two electrons, each with its own projection of spin. The simple names s orbital, p orbital, d orbital, and f orbital refer to orbitals with angular momentum quantum number ℓ = 0, 1, 2, and 3 respectively.

  4. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    For example, the electron configuration of the neon atom is 1s 2 2s 2 2p 6, meaning that the 1s, 2s, and 2p subshells are occupied by two, two, and six electrons, respectively. Electronic configurations describe each electron as moving independently in an orbital, in an average field created by the nuclei and all the other electrons.

  5. Electron shell - Wikipedia

    en.wikipedia.org/wiki/Electron_shell

    In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus.The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from the nucleus.

  6. Megastructure - Wikipedia

    en.wikipedia.org/wiki/Megastructure

    An orbital ring is a dynamically elevated ring placed around the Earth that rotates at an angular rate that is faster than orbital velocity at that altitude, stationary platforms can be supported by the excess centripetal acceleration of the super-orbiting ring (similar in principle to a Launch loop), and ground-tethers can be supported from ...

  7. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    Chemist Linus Pauling first developed the hybridisation theory in 1931 to explain the structure of simple molecules such as methane (CH 4) using atomic orbitals. [2] Pauling pointed out that a carbon atom forms four bonds by using one s and three p orbitals, so that "it might be inferred" that a carbon atom would form three bonds at right angles (using p orbitals) and a fourth weaker bond ...

  8. Electron orbital imaging - Wikipedia

    en.wikipedia.org/wiki/Electron_orbital_imaging

    Electron orbital imaging has applications in solid state physics wherein the primary goal is to understand the observed bulk properties of a given material—whether electronic or magnetic—from the atomic perspective of the constituent electrons. In many materials it is the case is that there is a delicate balance of competing interactions ...

  9. Particle in a ring - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_ring

    The case of a particle in a one-dimensional ring is an instructive example when studying the quantization of angular momentum for, say, an electron orbiting the nucleus. The azimuthal wave functions in that case are identical to the energy eigenfunctions of the particle on a ring.