Search results
Results from the WOW.Com Content Network
For example, an individual compressor can be rated by comparing the energy needed to run the compressor versus the expected refrigeration capacity based on inlet volume flow rate. It is important to note that both CoP and PF for a refrigeration system are only defined at specific operating conditions, including temperatures and thermal loads.
Vapor-compression refrigeration [6] For comparison, a simple stylized diagram of a heat pump's vapor-compression refrigeration cycle: 1) condenser, 2) expansion valve, 3) evaporator, 4) compressor (Note that this diagram is flipped vertically and horizontally compared to the previous one) [7] Temperature–entropy diagram of the vapor-compression cycle.
Members of ASHRAE receive the current volume, in both print and CD-ROM form, each year as a basic membership benefit. An enhanced electronic version, known as ASHRAE Handbook Online is a web-based version updated annually that contains the four latest volumes as well as extra content such as calculations, demonstration videos, and spreadsheets.
A representative pressure–volume diagram for a refrigeration cycle. Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), [1] in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles.
A device that removes heat from a liquid via a vapor-compression or absorption refrigeration cycle. This cooled liquid flows through pipes in a building and passes through coils in air handlers, fan-coil units, or other systems, cooling and usually dehumidifying the air in the building. Chillers are of two types; air-cooled or water-cooled.
A cascade refrigeration cycle is a multi-stage thermodynamic cycle. An example two-stage process is shown at right. (Bottom on mobile) The cascade cycle is often employed for devices such as ULT freezers. [1] In a cascade refrigeration system, two or more vapor-compression cycles with different refrigerants are used.
The choice of working fluids is known to have a significant impact on the thermodynamic as well as economic performance of the cycle. A suitable fluid must exhibit favorable physical, chemical, environmental, safety and economic properties such as low specific volume (high density), viscosity, toxicity, flammability, ozone depletion potential (ODP), global warming potential (GWP) and cost, as ...
A basic refrigeration cycle consists of four major elements: a compressor, a condenser, a metering device and an evaporator. As a refrigerant passes through a circuit containing these four elements, air conditioning occurs. The cycle starts when refrigerant enters the compressor in a low-pressure, moderate-temperature, gaseous form.