Search results
Results from the WOW.Com Content Network
A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .
In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the ...
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product.Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear".
The entire field is the phase portrait, a particular path taken along a flow line (i.e. a path always tangent to the vectors) is a phase path. The flows in the vector field indicate the time-evolution of the system the differential equation describes.
The definition of the exterior algebra can be extended for spaces built from vector spaces, such as vector fields and functions whose domain is a vector space. Moreover, the field of scalars may be any field (however for fields of characteristic two, the above condition = must be replaced with + =, which is equivalent in other characteristics).
A vector field X on M and a vector field Y on N are said to be φ-related if φ ∗ X = φ ∗ Y as vector fields along φ. In other words, for all x in M, dφ x (X) = Y φ(x). In some situations, given a X vector field on M, there is a unique vector field Y on N which is φ-related to X. This is true in particular when φ is a diffeomorphism.
An example of a solenoidal vector field, (,) = (,) In vector calculus a solenoidal vector field (also known as an incompressible vector field , a divergence-free vector field , or a transverse vector field ) is a vector field v with divergence zero at all points in the field: ∇ ⋅ v = 0. {\displaystyle \nabla \cdot \mathbf {v} =0.}
Interchanging the vector field v and ∇ operator, we arrive at the cross product of a vector field with curl of a vector field: = () , where ∇ F is the Feynman subscript notation, which considers only the variation due to the vector field F (i.e., in this case, v is treated as being constant in space).