enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Graphs of y = b x for various bases b: base 10, base e, base 2, base ⁠ 1 / 2 ⁠. Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.

  3. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    The polynomial 3x 25x + 4 is written in descending powers of x. The first term has coefficient 3, indeterminate x, and exponent 2. In the second term, the coefficient is −5. The third term is a constant. Because the degree of a non-zero polynomial is the largest degree of any one term, this polynomial has degree two. [11]

  4. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    Because (a + 1) 2 = a, a + 1 is the unique solution of the quadratic equation x 2 + a = 0. On the other hand, the polynomial x 2 + ax + 1 is irreducible over F 4, but it splits over F 16, where it has the two roots ab and ab + a, where b is a root of x 2 + x + a in F 16. This is a special case of Artin–Schreier theory.

  5. Simplification - Wikipedia

    en.wikipedia.org/wiki/Simplification

    Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include:

  6. Fixed point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fixed_point_(mathematics)

    For example, if f is defined on the real numbers by = +, then 2 is a fixed point of f, because f(2) = 2. Not all functions have fixed points: for example, f ( x ) = x + 1 has no fixed points because x + 1 is never equal to x for any real number.

  7. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    For example, if a system contains , a system over the rational numbers is obtained by adding the equation r 2 22 = 0 and replacing by r 2 in the other equations. In the case of a finite field, the same transformation allows always supposing that the field k has a prime order.

  8. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    x 1 = x; x 2 = x 2 for i = k - 2 to 0 do if n i = 0 then x 2 = x 1 * x 2; x 1 = x 1 2 else x 1 = x 1 * x 2; x 2 = x 2 2 return x 1 The algorithm performs a fixed sequence of operations ( up to log n ): a multiplication and squaring takes place for each bit in the exponent, regardless of the bit's specific value.

  9. Algebraic function - Wikipedia

    en.wikipedia.org/wiki/Algebraic_function

    A graph of three branches of the algebraic function y, where y 3 − xy + 1 = 0, over the domain 3/2 2/3 < x < 50. Furthermore, even if one is ultimately interested in real algebraic functions, there may be no means to express the function in terms of addition, multiplication, division and taking nth roots without resorting to complex numbers ...