enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    A 2-bit float with 1-bit exponent and 1-bit mantissa would only have 0, 1, Inf, NaN values. If the mantissa is allowed to be 0-bit, a 1-bit float format would have a 1-bit exponent, and the only two values would be 0 and Inf. The exponent must be at least 1 bit or else it no longer makes sense as a float (it would just be a signed number).

  3. Significand - Wikipedia

    en.wikipedia.org/wiki/Significand

    In 1946, Arthur Burks used the terms mantissa and characteristic to describe the two parts of a floating-point number (Burks [11] et al.) by analogy with the then-prevalent common logarithm tables: the characteristic is the integer part of the logarithm (i.e. the exponent), and the mantissa is the fractional part.

  4. Significant figures - Wikipedia

    en.wikipedia.org/wiki/Significant_figures

    The part of the representation that contains the significant figures (1.30 or 1.23) is known as the significand or mantissa. The digits in the base and exponent ( 10 3 or 10 −2 ) are considered exact numbers so for these digits, significant figures are irrelevant.

  5. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    For floating-point arithmetic, the mantissa was restricted to a hundred digits or fewer, and the exponent was restricted to two digits only. The largest memory supplied offered 60 000 digits, however Fortran compilers for the 1620 settled on fixed sizes such as 10, though it could be specified on a control card if the default was not satisfactory.

  6. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in ordinary decimal notation.

  7. Subnormal number - Wikipedia

    en.wikipedia.org/wiki/Subnormal_number

    In a normal floating-point value, there are no leading zeros in the significand (also commonly called mantissa); rather, leading zeros are removed by adjusting the exponent (for example, the number 0.0123 would be written as 1.23 × 10 −2). Conversely, a denormalized floating-point value has a significand with a leading digit of zero.

  8. Microsoft Binary Format - Wikipedia

    en.wikipedia.org/wiki/Microsoft_Binary_Format

    MBF numbers consist of an 8-bit base-2 exponent, a sign bit (positive mantissa: s = 0; negative mantissa: s = 1) and a 23-, [43] [8] 31-[8] or 55-bit [43] mantissa of the significand. There is always a 1-bit implied to the left of the explicit mantissa, and the radix point is located before this assumed bit.

  9. Mantissa - Wikipedia

    en.wikipedia.org/wiki/Mantissa

    Mantissa (/ m æ n ˈ t ɪ s ə /) may refer to: Mantissa (logarithm), the fractional part of the common (base-10) logarithm; Significand (also commonly called mantissa), the significant digits of a floating-point number or a number in scientific notation; Mantissa (band) Mantissa, a 1982 novel by John Fowles; Mantissa College