enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Automotive aerodynamics - Wikipedia

    en.wikipedia.org/wiki/Automotive_aerodynamics

    Automotive aerodynamics is the study of the aerodynamics of road vehicles. Its main goals are reducing drag and wind noise, minimizing noise emission, and preventing undesired lift forces and other causes of aerodynamic instability at high speeds. Air is also considered a fluid in this case.

  3. Automobile drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Automobile_drag_coefficient

    The two main factors that impact drag are the frontal area of the vehicle and the drag coefficient. The drag coefficient is a unit-less value that denotes how much an object resists movement through a fluid such as water or air. A potential complication of altering a vehicle's aerodynamics is that it may cause the vehicle to get too much lift.

  4. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  5. Aerodynamics - Wikipedia

    en.wikipedia.org/wiki/Aerodynamics

    Aerodynamics is a significant element of vehicle design, including road cars and trucks where the main goal is to reduce the vehicle drag coefficient, and racing cars, where in addition to reducing drag the goal is also to increase the overall level of downforce. [21]

  6. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    Aerodynamic Drag and its effect on the acceleration and top speed of a vehicle. Vehicle Aerodynamic Drag calculator based on drag coefficient, frontal area and speed. Smithsonian National Air and Space Museum's How Things Fly website; Effect of dimples on a golf ball and a car

  7. Stability derivatives - Wikipedia

    en.wikipedia.org/wiki/Stability_derivatives

    Stability and control derivatives change as flight conditions change. That is, the forces and moments on the vehicle are seldom simple (linear) functions of its states. Because of this, the dynamics of atmospheric flight vehicles can be difficult to analyze. The following are two methods used to tackle this complexity.

  8. Diffuser (automotive) - Wikipedia

    en.wikipedia.org/wiki/Diffuser_(automotive)

    Top: Lateral view; the red circles mark the front air dam/splitter and rear diffuser. Bottom: Rear. A diffuser, in an automotive context, is a shaped section of the car rear which improves the car's aerodynamic properties by enhancing the transition between the high-velocity airflow underneath the car and the much slower freestream airflow of the ambient atmosphere.

  9. Kammback - Wikipedia

    en.wikipedia.org/wiki/Kammback

    A Kammback—also known as a Kamm tail or K-tail—is an automotive styling feature wherein the rear of the car slopes downwards before being abruptly cut off with a vertical or near-vertical surface. A Kammback reduces aerodynamic drag, thus improving efficiency and reducing fuel consumption, [1] while maintaining a practical shape for a vehicle.