enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    In probability theory and computer science, a log probability is simply a logarithm of a probability. [1] The use of log probabilities means representing probabilities on a logarithmic scale ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} , instead of the standard [ 0 , 1 ] {\displaystyle [0,1]} unit interval .

  3. Logit - Wikipedia

    en.wikipedia.org/wiki/Logit

    If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: ⁡ = ⁡ = ⁡ ⁡ = ⁡ = ⁡ (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.

  4. Logarithmic distribution - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_distribution

    A Poisson compounded with Log(p)-distributed random variables has a negative binomial distribution. In other words, if N is a random variable with a Poisson distribution , and X i , i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log( p ) distribution, then

  5. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    A probability distribution is not uniquely determined by the moments E[X n] = e nμ + ⁠ 1 / 2 ⁠ n 2 σ 2 for n ≥ 1. That is, there exist other distributions with the same set of moments. [4] In fact, there is a whole family of distributions with the same moments as the log-normal distribution. [citation needed]

  6. Binary regression - Wikipedia

    en.wikipedia.org/wiki/Binary_regression

    The simplest direct probabilistic model is the logit model, which models the log-odds as a linear function of the explanatory variable or variables. The logit model is "simplest" in the sense of generalized linear models (GLIM): the log-odds are the natural parameter for the exponential family of the Bernoulli distribution, and thus it is the simplest to use for computations.

  7. C H E L S E A G R E E N P U B L I S H I N G W H I T E R I V E ...

    images.huffingtonpost.com/2007-09-10-EOA...

    %PDF-1.5 %âãÏÓ 100 0 obj > endobj xref 100 62 0000000016 00000 n 0000002402 00000 n 0000002539 00000 n 0000001570 00000 n 0000002637 00000 n 0000002762 00000 n 0000003272 00000 n 0000003519 00000 n 0000003561 00000 n 0000004173 00000 n 0000005340 00000 n 0000005569 00000 n 0000005954 00000 n 0000006116 00000 n 0000006328 00000 n 0000006538 ...

  8. Odds ratio - Wikipedia

    en.wikipedia.org/wiki/Odds_ratio

    The log odds ratio shown here is based on the odds for the event occurring in group B relative to the odds for the event occurring in group A. Thus, when the probability of X occurring in group B is greater than the probability of X occurring in group A, the odds ratio is greater than 1, and the log odds ratio is greater than 0.

  9. Log-logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Log-logistic_distribution

    In probability and statistics, the log-logistic distribution (known as the Fisk distribution in economics) is a continuous probability distribution for a non-negative random variable. It is used in survival analysis as a parametric model for events whose rate increases initially and decreases later, as, for example, mortality rate from cancer ...