Search results
Results from the WOW.Com Content Network
This diagram illustrates the nested/interlocking domains or factors that make up the 5M model used for troubleshooting and risk assessment, especially in traffic industries. Man, Machine, and Medium form three interlocking circles, with Mission at the intersection, and the space surrounding them representing the prevailing Management approach.
Sample Ishikawa diagram shows the causes contributing to problem. The defect, or the problem to be solved, [1] is shown as the fish's head, facing to the right, with the causes extending to the left as fishbones; the ribs branch off the backbone for major causes, with sub-branches for root-causes, to as many levels as required.
Man; Machine; Material; Method; Milieu/environment; Management; Measurability; The original 5M method was expanded to include the last two factors, as the influence of management in the system and measurability are of a certain scope. (See also the Ishikawa diagram as a graphical representation of the 7Ms).
Machinability is the ease with which a metal can be cut permitting the removal of the material with a satisfactory finish at low cost. [1] Materials with good machinability (free machining materials) require little power to cut, can be cut quickly, easily obtain a good finish, and do not cause significant wear on the tooling.
Material removal rate (MRR) is the amount of material removed per time unit (usually per minute) when performing machining operations such as using a lathe or milling machine. The more material removed per minute, the higher the material removal rate. [1] [2] The MRR is a single number that enables you to do this. It is a direct indicator of ...
Multiaxis machining is a manufacturing process that involves tools that move in 4 or more directions and are used to manufacture parts out of metal or other materials by milling away excess material, by water jet cutting or by laser cutting. This type of machining was originally performed mechanically on large complex machines.
Electrochemical machining (ECM) is a method of removing metal by an electrochemical process. It is normally used for mass production and for working extremely hard materials, or materials that are difficult to machine using conventional methods. [1] Its use is limited to electrically conductive materials.
The objective is to design for lower cost. The cost is driven by time, so the design must minimize the time required to not just machine (remove the material), but also the set-up time of the CNC machine, NC programming, fixturing and many other activities that are dependent on the complexity and size of the part.