enow.com Web Search

  1. Ad

    related to: polynomial interpolation theorem worksheet examples with answers pdf notes

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.

  3. Chebyshev nodes - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_nodes

    This product is a monic polynomial of degree n. It may be shown that the maximum absolute value (maximum norm) of any such polynomial is bounded from below by 2 1−n. This bound is attained by the scaled Chebyshev polynomials 2 1−n T n, which are also monic. (Recall that |T n (x)| ≤ 1 for x ∈ [−1, 1]. [5])

  4. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    Another way to see this result is to note that any interpolating cubic polynomial can be expressed as the sum of the unique interpolating quadratic polynomial plus an arbitrarily scaled cubic polynomial that vanishes at all three points in the interval, and the integral of this second term vanishes because it is odd within the interval.

  5. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    A better form of the interpolation polynomial for practical (or computational) purposes is the barycentric form of the Lagrange interpolation (see below) or Newton polynomials. Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function.

  6. Stone–Weierstrass theorem - Wikipedia

    en.wikipedia.org/wiki/Stone–Weierstrass_theorem

    Because polynomials are among the simplest functions, and because computers can directly evaluate polynomials, this theorem has both practical and theoretical relevance, especially in polynomial interpolation. The original version of this result was established by Karl Weierstrass in 1885 using the Weierstrass transform.

  7. Hermite interpolation - Wikipedia

    en.wikipedia.org/wiki/Hermite_interpolation

    The Hermite interpolation problem is a problem of linear algebra that has the coefficients of the interpolation polynomial as unknown variables and a confluent Vandermonde matrix as its matrix. [3] The general methods of linear algebra, and specific methods for confluent Vandermonde matrices are often used for computing the interpolation ...

  8. Alexander–Hirschowitz theorem - Wikipedia

    en.wikipedia.org/wiki/Alexander–Hirschowitz...

    The Alexander–Hirschowitz theorem shows that a specific collection of k double points in the P^r will impose independent types of conditions on homogenous polynomials and the hypersurface of d with many known lists of exceptions. [1]

  9. Lebesgue constant - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_constant

    In mathematics, the Lebesgue constants (depending on a set of nodes and of its size) give an idea of how good the interpolant of a function (at the given nodes) is in comparison with the best polynomial approximation of the function (the degree of the polynomials are fixed).

  1. Ad

    related to: polynomial interpolation theorem worksheet examples with answers pdf notes