Search results
Results from the WOW.Com Content Network
Triple point: 289.8 K (16.7 °C), ? Pa Critical point: 593 K (320 °C), 57.8 bar Eutectic point with water –26.7 °C Std enthalpy change of fusionΔ fus H o +11.7 kJ/mol Std entropy change of fusionΔ fus S o: 40.5 J/(mol·K) Std enthalpy change of vaporizationΔ vap H o +23.7 kJ/mol Std entropy change of vaporizationΔ vap S o? J/(mol·K ...
Acetic acid can never be truly water-free in an atmosphere that contains water, so the presence of 0.1% water in glacial acetic acid lowers its melting point by 0.2 °C. [ 9 ] A common symbol for acetic acid is AcOH (or HOAc), where Ac is the pseudoelement symbol representing the acetyl group CH 3 −C(=O)− ; the conjugate base , acetate ( CH ...
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric acid: 298.9 44 –3.9
This is a list of the various reported boiling points for the elements, with recommended values to be used elsewhere on Wikipedia. For broader coverage of this topic, see Boiling point . Boiling points, Master List format
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
In the laboratory, methyl formate can be produced by the condensation reaction of methanol and formic acid, as follows: . HCOOH + CH 3 OH → HCOOCH 3 + H 2 O. Industrial methyl formate, however, is usually produced by the combination of methanol and carbon monoxide (carbonylation) in the presence of a strong base, such as sodium methoxide: [4]
Water boiling at 99.3 °C (210.8 °F) at 215 m (705 ft) elevation. The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid [1] [2] and the liquid changes into a vapor.