Search results
Results from the WOW.Com Content Network
Semiconservative replication derives its name from the fact that this mechanism of transcription was one of three models originally proposed [3] [4] for DNA replication: Semiconservative replication would produce two copies that each contained one of the original strands of DNA and one new strand. [3] Semiconservative replication is beneficial ...
However, this result was consistent with both semiconservative and dispersive replication. Semiconservative replication would result in double-stranded DNA with one strand of 15 N DNA, and one of 14 N DNA, while dispersive replication would result in double-stranded DNA with both strands having mixtures of 15 N and 14 N DNA, either of which ...
Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.
The experiment implied that, upon replication, the two complementary strands of the bacterial DNA separate, and that each of the single strands directs the synthesis of a new, complementary strand, a result that verified the suggestion for DNA replication put forward five years earlier by James Watson and Francis Crick [8] and lent important ...
The process of semiconservative replication for the site of DNA replication is a fork-like DNA structure, the replication fork, where the DNA helix is open, or unwound, exposing unpaired DNA nucleotides for recognition and base pairing for the incorporation of free nucleotides into double-stranded DNA. [3]
The replication of bacteriophage T4 DNA upon infection of E. coli is a well-studied DNA replication system. During the period of exponential DNA increase at 37°C, the rate of elongation is 749 nucleotides per second. [11] The mutation rate during replication is 1.7 mutations per 10 8 base pairs. [12]
Glucos 6-phosphate dehydrogenase. Franklin (Frank) William Stahl (born October 8, 1929) is an American molecular biologist and geneticist. With Matthew Meselson, Stahl conducted the famous Meselson-Stahl experiment showing that DNA is replicated by a semiconservative mechanism, meaning that each strand of the DNA serves as a template for production of a new strand.
The results showed that after one generation of replication in the 14 N medium, the DNA formed a band of intermediate density between that of pure 15 N DNA and pure 14 N DNA. This supported the semiconservative DNA replication proposed by Watson and Crick, where each strand of the parental DNA molecule serves as a template for the synthesis of ...