Search results
Results from the WOW.Com Content Network
The animal group with the most obvious biradial symmetry is the ctenophores. In ctenophores the two planes of symmetry are (1) the plane of the tentacles and (2) the plane of the pharynx. [1] In addition to this group, evidence for biradial symmetry has even been found in the 'perfectly radial' freshwater polyp Hydra (a cnidarian). Biradial ...
In the theory of Coxeter groups, the symmetric group is the Coxeter group of type A n and occurs as the Weyl group of the general linear group. In combinatorics , the symmetric groups, their elements ( permutations ), and their representations provide a rich source of problems involving Young tableaux , plactic monoids , and the Bruhat order .
Bilateria (/ ˌ b aɪ l ə ˈ t ɪər i ə /) [5] is a large clade or infrakingdom of animals called bilaterians (/ ˌ b aɪ l ə ˈ t ɪər i ə n /), [6] characterised by bilateral symmetry (i.e. having a left and a right side that are mirror images of each other) during embryonic development.
Fish: Dorsal view of right-bending (left) and left-bending (right) jaw morphs [4]. Many flatfish, such as flounders, have eyes placed asymmetrically in the adult fish.The fish has the usual symmetrical body structure when it is young, but as it matures and moves to living close to the sea bed, the fish lies on its side, and the head twists so that both eyes are on the top.
A key discovery was the existence of groups of homeobox genes, which function as switches responsible for laying down the basic body plan in animals. The homeobox genes are remarkably conserved between species as diverse as the fruit fly and humans, the basic segmented pattern of the worm or fruit fly being the origin of the segmented spine in ...
In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object.
This article summarizes the classes of discrete symmetry groups of the Euclidean plane. The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane: 2 families of rosette groups – 2D point groups; 7 frieze groups – 2D line ...
Finite spherical symmetry groups are also called point groups in three dimensions. There are five fundamental symmetry classes which have triangular fundamental domains: dihedral, cyclic, tetrahedral, octahedral, and icosahedral symmetry. This article lists the groups by Schoenflies notation, Coxeter notation, [1] orbifold notation, [2] and order.