enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fracture toughness - Wikipedia

    en.wikipedia.org/wiki/Fracture_toughness

    Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available. Morphology of fracture surfaces in materials that display ductile crack growth is influenced by changes in specimen thickness.

  3. Fracture mechanics - Wikipedia

    en.wikipedia.org/wiki/Fracture_mechanics

    Concrete fracture analysis is part of fracture mechanics that studies crack propagation and related failure modes in concrete. [17] As it is widely used in construction, fracture analysis and modes of reinforcement are an important part of the study of concrete, and different concretes are characterized in part by their fracture properties. [18]

  4. Wafer bond characterization - Wikipedia

    en.wikipedia.org/wiki/Wafer_bond_characterization

    The fracture toughness is a basic material parameter for analyzing the bond strength. The chevron test uses a special notch geometry for the specimen that is loaded with an increasing tensile force. The chevron notch geometry is commonly in shape of a triangle with different bond patterns.

  5. Stress intensity factor - Wikipedia

    en.wikipedia.org/wiki/Stress_intensity_factor

    In fracture mechanics, the stress intensity factor (K) is used to predict the stress state ("stress intensity") near the tip of a crack or notch caused by a remote load or residual stresses. [1] It is a theoretical construct usually applied to a homogeneous, linear elastic material and is useful for providing a failure criterion for brittle ...

  6. J-integral - Wikipedia

    en.wikipedia.org/wiki/J-integral

    The J-integral represents a way to calculate the strain energy release rate, or work per unit fracture surface area, in a material. [1] The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov [2] and independently in 1968 by James R. Rice, [3] who showed that an energetic contour path integral (called J) was independent of the path around a crack.

  7. Energy release rate (fracture mechanics) - Wikipedia

    en.wikipedia.org/wiki/Energy_release_rate...

    In fracture mechanics, the energy release rate, , is the rate at which energy is transformed as a material undergoes fracture.Mathematically, the energy release rate is expressed as the decrease in total potential energy per increase in fracture surface area, [1] [2] and is thus expressed in terms of energy per unit area.

  8. Crack growth resistance curve - Wikipedia

    en.wikipedia.org/wiki/Crack_growth_resistance_curve

    In fracture mechanics, a crack growth resistance curve shows the energy required for crack extension as a function of crack length in a given material.For materials that can be modeled with linear elastic fracture mechanics (LEFM), crack extension occurs when the applied energy release rate exceeds the material's resistance to crack extension .

  9. Theoretical strength of a solid - Wikipedia

    en.wikipedia.org/wiki/Theoretical_strength_of_a...

    When a solid is in tension, its atomic bonds stretch, elastically. Once a critical strain is reached, all the atomic bonds on the fracture plane rupture and the material fails mechanically. The stress at which the solid fractures is the theoretical strength, often denoted as . After fracture, the stretched atomic bonds return to their initial ...