Search results
Results from the WOW.Com Content Network
Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...
In the equation, m 1 and σ 1 represent the mass and surface tension of the reference fluid and m 2 and σ 2 the mass and surface tension of the fluid of interest. If we take water as a reference fluid, = If the surface tension of water is known which is 72 dyne/cm, we can calculate the surface tension of the specific fluid from the equation.
The Marangoni number for a simple liquid of viscosity with a surface tension change over a distance parallel to the surface, can be estimated as follows. Note that we assume that L {\displaystyle L} is the only length scale in the problem, which in practice implies that the liquid be at least L {\displaystyle L} deep.
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
In fluid dynamics, the capillary number (Ca) is a dimensionless quantity representing the relative effect of viscous drag forces versus surface tension forces acting across an interface between a liquid and a gas, or between two immiscible liquids.
The interfacial (surface) tension, St, (dyne cm −1), can be calculated by applying the equation of capillary rise method (when the contact angle Ө → 0): = where: h (cm) is the height of Hg column above the Hg meniscus in the capillary; r (cm) is the radius of capillary
At the meniscus interface, due to the surface tension, there is a pressure difference of =, where is the pressure on the convex side; and is known as Laplace pressure. If the tube has a circular section of radius r 0 {\displaystyle r_{0}} , and the meniscus has a spherical shape, the radius of curvature is r = r 0 / cos θ {\displaystyle r ...
A: The bottom of a concave meniscus. B: The top of a convex meniscus. In physics (particularly fluid statics), the meniscus (pl.: menisci, from Greek 'crescent') is the curve in the upper surface of a liquid close to the surface of the container or another object, produced by surface tension.