Search results
Results from the WOW.Com Content Network
In chemistry, the lever rule is a formula used to determine the mole fraction (x i) or the mass fraction (w i) of each phase of a binary equilibrium phase diagram.It can be used to determine the fraction of liquid and solid phases for a given binary composition and temperature that is between the liquidus and solidus line.
A compound lever comprises several levers acting in series: the resistance from one lever in a system of levers acts as effort for the next, and thus the applied force is transferred from one lever to the next. Examples of compound levers include scales, nail clippers and piano keys.
In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies).
In the example of a nail clipper on the right (a compound lever made of a class 2 and a class 3 lever), because the effort is applied vertically (that is, not perpendicular to the lever), distances to the respective fulcrums are measured horizontally, instead of along the lever. In this example, W/F is 7 + 1 / 1 × 6 / 6 + 2 = 6.
As Archimedes had previously shown, the center of mass of the triangle is at the point I on the "lever" where DI :DB = 1:3. Therefore, it suffices to show that if the whole weight of the interior of the triangle rests at I, and the whole weight of the section of the parabola at J, the lever is in equilibrium.
A stationary object (or set of objects) is in "static equilibrium," which is a special case of mechanical equilibrium. A paperweight on a desk is an example of static equilibrium. Other examples include a rock balance sculpture, or a stack of blocks in the game of Jenga, so long as the sculpture or stack of blocks is not in the state of collapsing.
The lever is operated by applying an input force F A at a point A located by the coordinate vector r A on the bar. The lever then exerts an output force F B at the point B located by r B. The rotation of the lever about the fulcrum P is defined by the rotation angle θ. This is an engraving from Mechanics Magazine published in London in 1824.
This equation of state of the mixture is called the lever rule. [5] [6] [7] The dotted parts of the curve in Fig. 1 are metastable states. For many years such states were an academic curiosity; Callen [8] gave as an example, "water that has been cooled below 0°C at a pressure of 1 atm. A tap on a beaker of water in this condition precipitates ...