Search results
Results from the WOW.Com Content Network
The Cu–Cl cycle is a hybrid process that employs both thermochemical and electrolysis steps. It has a maximum temperature requirement of about 530 degrees Celsius. [1] The Cu–Cl cycle involves four chemical reactions for water splitting, whose net reaction decomposes water into hydrogen and oxygen. All other chemicals are recycled.
Copper at red heat (300-400°C) combines directly with chlorine gas, giving (molten) copper(II) chloride. The reaction is very exothermic. [8] [15] Cu(s) + Cl 2 (g) → CuCl 2 (l) A solution of copper(II) chloride is commercially produced by adding chlorine gas to a circulating mixture of hydrochloric acid and copper. From this solution, the ...
Because this reaction is highly exothermic (238 kJ/mol), the temperature is monitored, to guard against thermal degradation of the catalyst. The reaction is as follows: CH 2 =CH 2 + 2 CuCl 2 → 2 CuCl + ClH 2 C-CH 2 Cl. The copper(II) chloride is regenerated by sequential reactions of the cuprous chloride with oxygen and then hydrogen chloride:
Chlorine can be manufactured by the electrolysis of a sodium chloride solution , which is known as the Chloralkali process. The production of chlorine results in the co-products caustic soda (sodium hydroxide, NaOH) and hydrogen gas (H 2). These two products, as well as chlorine itself, are highly reactive.
The process was based on the oxidation of hydrogen chloride: 4 HCl + O 2 → 2 Cl 2 + 2H 2 O. The reaction takes place at about 400 to 450 °C in the presence of a variety of catalysts, including copper chloride (CuCl 2). Three companies developed commercial processes for producing chlorine based on the Deacon reaction: [1]
Electrolysis of iron can eliminate direct emissions and further reduce emissions if the electricity is created from green energy. The small-scale electrolysis of iron has been successfully reported by dissolving it in molten oxide salts and using a platinum anode. [52] Oxygen anions form oxygen gas and electrons at the anode.
Copper fluoroborate baths are similar to acid sulfate baths, but they use fluoroborate as the anion rather than sulfate. [6] Copper fluoroborate is much more soluble than copper sulfate, which allows one to dissolve larger quantities of copper salt into the bath, enabling much higher current densities than what is possible in copper sulfate baths.
The sulfur–iodine cycle (S–I cycle) is a series of thermochemical processes used to produce hydrogen. The S–I cycle consists of three chemical reactions whose net reactant is water and whose net products are hydrogen and oxygen. All other chemicals are recycled. The S–I process requires an efficient source of heat.