Search results
Results from the WOW.Com Content Network
The two main factors that impact drag are the frontal area of the vehicle and the drag coefficient. The drag coefficient is a unit-less value that denotes how much an object resists movement through a fluid such as water or air. A potential complication of altering a vehicle's aerodynamics is that it may cause the vehicle to get too much lift.
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
The concept of vehicle-specific power (VSP) is a formalism used in the evaluation of vehicle emissions. The idea was first developed by J. L. Jiménez ( Jiménez 1998 ) at the Massachusetts Institute of Technology .
Aerodynamic Drag and its effect on the acceleration and top speed of a vehicle. Vehicle Aerodynamic Drag calculator based on drag coefficient, frontal area and speed. Smithsonian National Air and Space Museum's How Things Fly website; Effect of dimples on a golf ball and a car
These two properties determine the speed of sound in the gas at its given temperature. The Buckingham pi theorem then leads to a third dimensionless group, the ratio of the relative velocity to the speed of sound, which is known as the Mach number. Consequently when a body is moving relative to a gas, the drag coefficient varies with the Mach ...
OBD-II PIDs (On-board diagnostics Parameter IDs) are codes used to request data from a vehicle, used as a diagnostic tool.. SAE standard J1979 defines many OBD-II PIDs. All on-road vehicles and trucks sold in North America are required to support a subset of these codes, primarily for state mandated emissions inspections.
The procedure does not indicate fixed gear shift point, unlike the NEDC, letting each vehicle use its optimal shift points. In fact, these points depend on vehicle unique parameters as weight, torque map, specific power and engine speed. [5] During the WLTP the impact of the model’s optional equipment is also considered.
For example, an unloaded motor of = 5,700 rpm/V supplied with 11.1 V will run at a nominal speed of 63,270 rpm (= 5,700 rpm/V × 11.1 V). The motor may not reach this theoretical speed because there are non-linear mechanical losses.