Search results
Results from the WOW.Com Content Network
According to Newtonian mechanics, if the gun and shooter are at rest initially, the force on the bullet will be equal to that on the gun-shooter. This is due to Newton's third law of motion (For every action, there is an equal and opposite reaction). Consider a system where the gun and shooter have a combined mass m g and the bullet has a mass m b.
The pressure and temperature of the gas are directly proportional: As temperature increases, the pressure of the propane gas increases by the same factor. A simple consequence of this proportionality is that on a hot summer day, the propane tank pressure will be elevated, and thus propane tanks must be rated to withstand such increases in pressure.
For a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. [2] Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant.
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.
Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules." [1] For a given mass of an ideal gas, the volume and amount (moles) of the gas are directly proportional if the temperature and pressure are constant.
The general formula for the kinetic energy is =, where v is the velocity of the bullet and m is the mass of the bullet. Although both mass and velocity contribute to the muzzle energy, the muzzle energy is proportional to the mass while proportional to the square of the velocity. The velocity of the bullet is a more important determinant of ...
Longer barrels make it easier to aim if using iron sights, because of the longer sight radius, and with the right propellant load they can increase muzzle velocity, which gives a flatter trajectory and reduces the need to adjust for range. A bullet, while moving through its barrel, is being pushed forward by the gas expanding behind it.
The law was named after scientist Jacques Charles, who formulated the original law in his unpublished work from the 1780s.. In two of a series of four essays presented between 2 and 30 October 1801, [2] John Dalton demonstrated by experiment that all the gases and vapours that he studied expanded by the same amount between two fixed points of temperature.