Search results
Results from the WOW.Com Content Network
A drainage equation is an equation describing the relation between depth and spacing of parallel subsurface drains, depth of the watertable, depth and hydraulic conductivity of the soils. It is used in drainage design. Parameters in Hooghoudt's drainage equation. A well known steady-state drainage
Catchment hydrology – study of the governing processes in a given hydrologically defined catchment; Drainage basin management – covers water-storage, in the form of reservoirs, and flood-protection. Water quality – includes the chemistry of water in rivers and lakes, both of pollutants and natural solutes.
The equation is often used to predict flow to wells, which have radial symmetry, so the flow equation is commonly solved in polar or cylindrical coordinates. The Theis equation is one of the most commonly used and fundamental solutions to the groundwater flow equation; it can be used to predict the transient evolution of head due to the effects ...
The main conclusion of the study was that the HBV model can be used to predict material transport on the scale of the drainage basin during stationary conditions, but cannot be easily generalised to areas not specifically calibrated. In a different work, Castanedo et al. applied an evolutionary algorithm to automated watershed model calibration.
According to Montgomery and Dietrich’s equation, drainage density is a function of vertical hydraulic conductivity. Coarse-grained sediment like sand would have a higher hydraulic conductivity and are predicted by the equation to form a relatively higher drainage density system than a system formed by finer silt with a lower hydraulic ...
Spacing equations of subsurface drains and the groundwater energy balance applied to drainage equations [5] are examples of two-dimensional groundwater models. Three-dimensional models like Modflow [6] require discretization of the entire flow domain. To that end the flow region must be subdivided into smaller elements (or cells), in both ...
Groundwater recharge or deep drainage or deep percolation is a hydrologic process, where water moves downward from surface water to groundwater. Recharge is the primary method through which water enters an aquifer .
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.