enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    Recamán's sequence: 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence. A005132: Look-and ...

  3. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...

  4. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    Sequences dn + a with odd d are often ignored because half the numbers are even and the other half is the same numbers as a sequence with 2d, if we start with n = 0. For example, 6n + 1 produces the same primes as 3n + 1, while 6n + 5 produces the same as 3n + 2 except for the only even prime 2. The following table lists several arithmetic ...

  5. Harmonic progression (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_progression...

    Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms. As a third equivalent characterization, it is an infinite sequence of the form 1 a , 1 a + d , 1 a + 2 d , 1 a + 3 d , ⋯ , {\displaystyle {\frac {1}{a}},\ {\frac {1}{a+d}},\ {\frac {1}{a+2d}},\ {\frac {1}{a+3d}},\cdots ,}

  6. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    It concerns sequences of integers in which each term is obtained from the previous term as follows: if a term is even, the next term is one half of it. If a term is odd, the next term is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter which positive integer is chosen to start the sequence.

  7. Primes in arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Primes_in_arithmetic...

    In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a n = 3 + 4 n {\displaystyle a_{n}=3+4n} for 0 ≤ n ≤ 2 {\displaystyle 0\leq n\leq 2} .

  8. Salem–Spencer set - Wikipedia

    en.wikipedia.org/wiki/Salem–Spencer_set

    Salem–Spencer sets are also called 3-AP-free sequences or progression-free sets. They have also been called non-averaging sets, [ 1 ] [ 2 ] but this term has also been used to denote a set of integers none of which can be obtained as the average of any subset of the other numbers. [ 3 ]

  9. Sequence - Wikipedia

    en.wikipedia.org/wiki/Sequence

    An infinite sequence of real numbers (in blue). This sequence is neither increasing, decreasing, convergent, nor Cauchy. It is, however, bounded. In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called elements, or terms).