enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Random forests or random decision forests is an ensemble learning method for classification, regression and other tasks that works by creating a multitude of decision trees during training. For classification tasks, the output of the random forest is the class selected by most trees.

  3. Forest plot - Wikipedia

    en.wikipedia.org/wiki/Forest_plot

    A forest plot, also known as a blobbogram, is a graphical display of estimated results from a number of scientific studies addressing the same question, along with the overall results. [1] It was developed for use in medical research as a means of graphically representing a meta-analysis of the results of randomized controlled trials .

  4. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Rotation forest – in which every decision tree is trained by first applying principal component analysis (PCA) on a random subset of the input features. [ 13 ] A special case of a decision tree is a decision list , [ 14 ] which is a one-sided decision tree, so that every internal node has exactly 1 leaf node and exactly 1 internal node as a ...

  5. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    The bootstrapped dataset helps remove the bias that occurs when building a decision tree model with the same data the model is tested with. The ability to leverage the power of random forests can also help significantly improve the overall accuracy of the model being built. This method generates many decisions from many decision trees and ...

  6. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    An ensemble of models employing the random subspace method can be constructed using the following algorithm: Let the number of training points be N and the number of features in the training data be D. Let L be the number of individual models in the ensemble. For each individual model l, choose n l (n l < N) to be the

  7. List of graphical methods - Wikipedia

    en.wikipedia.org/wiki/List_of_graphical_methods

    Included are diagram techniques, chart techniques, plot techniques, and other forms of visualization. There is also a list of computer graphics and descriptive geometry topics . Simple displays

  8. Gradient boosting - Wikipedia

    en.wikipedia.org/wiki/Gradient_boosting

    It gives a prediction model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions about the data, which are typically simple decision trees. [1] [2] When a decision tree is the weak learner, the resulting algorithm is called gradient-boosted trees; it usually outperforms random forest. [1]

  9. Jackknife variance estimates for random forest - Wikipedia

    en.wikipedia.org/wiki/Jackknife_Variance...

    In some classification problems, when random forest is used to fit models, jackknife estimated variance is defined as: ... in which the accuracy of model with m=5 is ...