enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Random forests or random decision forests is an ensemble learning method for classification, regression and other tasks that works by creating a multitude of decision trees during training. For classification tasks, the output of the random forest is the class selected by most trees.

  3. Jackknife variance estimates for random forest - Wikipedia

    en.wikipedia.org/wiki/Jackknife_Variance...

    Here N is the number of samples, M is the number of classes, is the indicator function which equals 1 when observation is in class j, equals 0 when in other classes. p i j {\displaystyle p_{ij}} is the predicted probability of i t h {\displaystyle ith} observation in class j {\displaystyle j} .This method is used in Kaggle [ 2 ] These two ...

  4. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Rotation forest – in which every decision tree is trained by first applying principal component analysis (PCA) on a random subset of the input features. [ 13 ] A special case of a decision tree is a decision list , [ 14 ] which is a one-sided decision tree, so that every internal node has exactly 1 leaf node and exactly 1 internal node as a ...

  5. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    There are several important factors to consider when designing a random forest. If the trees in the random forests are too deep, overfitting can still occur due to over-specificity. If the forest is too large, the algorithm may become less efficient due to an increased runtime. Random forests also do not generally perform well when given sparse ...

  6. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    An ensemble of models employing the random subspace method can be constructed using the following algorithm: Let the number of training points be N and the number of features in the training data be D. Let L be the number of individual models in the ensemble. For each individual model l, choose n l (n l < N) to be the number of input points for l.

  7. Recursive partitioning - Wikipedia

    en.wikipedia.org/wiki/Recursive_partitioning

    Ensemble learning methods such as Random Forests help to overcome a common criticism of these methods – their vulnerability to overfitting of the data – by employing different algorithms and combining their output in some way. This article focuses on recursive partitioning for medical diagnostic tests, but the technique has far wider ...

  8. Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.

  9. Ensemble learning - Wikipedia

    en.wikipedia.org/wiki/Ensemble_learning

    Fast algorithms such as decision trees are commonly used in ensemble methods (e.g., random forests), although slower algorithms can benefit from ensemble techniques as well. By analogy, ensemble techniques have been used also in unsupervised learning scenarios, for example in consensus clustering or in anomaly detection.