enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Barycenter (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Barycenter_(astronomy)

    In astronomy, the barycenter (or barycentre; from Ancient Greek βαρύς (barús) 'heavy' and κέντρον (kéntron) 'center') [1] is the center of mass of two or more bodies that orbit one another and is the point about which the bodies orbit. A barycenter is a dynamical point, not a physical object.

  3. Center of mass - Wikipedia

    en.wikipedia.org/wiki/Center_of_mass

    This toy uses the principles of center of mass to keep balance when sitting on a finger. In physics, the center of mass of a distribution of mass in space (sometimes referred to as the barycenter or balance point) is the unique point at any given time where the weighted relative position of the distributed mass sums to zero.

  4. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    Right: Two bodies with a "slight" difference in mass orbiting a common barycenter. Their sizes and this type of orbit are similar to the Pluto–Charon system (in which the barycenter is external to both bodies), as well as the Earth–Moon system (in which the barycenter is internal to the larger body).

  5. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    In physics, specifically classical mechanics, the three-body problem is to take the initial positions and velocities (or momenta) of three point masses that orbit each other in space and calculate their subsequent trajectories using Newton's laws of motion and Newton's law of universal gravitation.

  6. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

  7. n-body problem - Wikipedia

    en.wikipedia.org/wiki/N-body_problem

    In physics, the n-body problem is the problem of predicting the individual motions of a group of celestial objects interacting with each other gravitationally. [1] Solving this problem has been motivated by the desire to understand the motions of the Sun, Moon, planets, and visible stars.

  8. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    In a gravitational two-body problem with negative energy, both bodies follow similar elliptic orbits with the same orbital period around their common barycenter. The relative position of one body with respect to the other also follows an elliptic orbit. Examples of elliptic orbits include Hohmann transfer orbits, Molniya orbits, and tundra orbits.

  9. Lagrange point - Wikipedia

    en.wikipedia.org/wiki/Lagrange_point

    The barycenter being both the center of mass and center of rotation of the three-body system, this resultant force is exactly that required to keep the smaller body at the Lagrange point in orbital equilibrium with the other two larger bodies of the system (indeed, the third body needs to have negligible mass).