enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Restricted Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Restricted_Boltzmann_machine

    Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.

  3. Deeplearning4j - Wikipedia

    en.wikipedia.org/wiki/Deeplearning4j

    Deeplearning4j includes implementations of the restricted Boltzmann machine, deep belief net, deep autoencoder, stacked denoising autoencoder and recursive neural tensor network, word2vec, doc2vec, and GloVe. These algorithms all include distributed parallel versions that integrate with Apache Hadoop and Spark. [5]

  4. Deep belief network - Wikipedia

    en.wikipedia.org/wiki/Deep_belief_network

    In machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer.

  5. Convolutional deep belief network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_deep_belief...

    In computer science, a convolutional deep belief network (CDBN) is a type of deep artificial neural network composed of multiple layers of convolutional restricted Boltzmann machines stacked together. [1]

  6. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    In machine learning, the vanishing gradient problem is encountered when training neural networks with gradient-based learning methods and backpropagation. In such methods, during each training iteration, each neural network weight receives an update proportional to the partial derivative of the loss function with respect to the current weight ...

  7. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    Restricted Boltzmann machines (RBMs) are often used as a building block for multilayer learning architectures. [ 6 ] [ 24 ] An RBM can be represented by an undirected bipartite graph consisting of a group of binary hidden variables , a group of visible variables, and edges connecting the hidden and visible nodes.

  8. Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_machine

    In this example there are 3 hidden units (blue) and 4 visible units (white). This is not a restricted Boltzmann machine. A Boltzmann machine, like a Sherrington–Kirkpatrick model, is a network of units with a total "energy" (Hamiltonian) defined for the overall network. Its units produce binary results.

  9. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    Logistic activation function. The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights.