Search results
Results from the WOW.Com Content Network
Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mechanics, analytical dynamics and chemical equilibria.
The most fundamental concept in chemistry is the law of conservation of mass, which states that there is no detectable change in the quantity of matter during an ordinary chemical reaction. Modern physics shows that it is actually energy that is conserved, and that energy and mass are related; a concept which becomes important in nuclear chemistry.
Although physics and chemistry are branches of science that both study matter, they differ in the scopes of their respective subjects. While physics focuses on phenomena such as force, motion, electromagnetism, elementary particles, and spacetime, [3] chemistry is concerned mainly with the structure and reactions of atoms and molecules, but does not necessarily deal with non-baryonic matter.
In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. [1] [2] Most modern equations of state are formulated in the Helmholtz free energy.
Such states of matter are studied in condensed matter physics. In extreme conditions found in some stars and in the early universe, atoms break into their constituents and matter exists as some form of degenerate matter or quark matter. Such states of matter are studied in high-energy physics.
Broad. In physics, laws exclusively refer to the broad domain of matter, motion, energy, and force itself, rather than more specific systems in the universe, such as living systems, e.g. the mechanics of the human body. [10] The term "scientific law" is traditionally associated with the natural sciences, though the social sciences also contain ...
In chemistry, the law of mass action is the proposition that the rate of a chemical reaction is directly proportional to the product of the activities or concentrations of the reactants. [1] It explains and predicts behaviors of solutions in dynamic equilibrium .
The law of conservation of mass and the analogous law of conservation of energy were finally generalized and unified into the principle of mass–energy equivalence, described by Albert Einstein's equation =. Special relativity also redefines the concept of mass and energy, which can be used interchangeably and are defined relative to the frame ...