Search results
Results from the WOW.Com Content Network
The equation defining a plane curve expressed in polar coordinates is known as a polar equation. In many cases, such an equation can simply be specified by defining r as a function of φ. The resulting curve then consists of points of the form (r(φ), φ) and can be regarded as the graph of the polar function r.
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...
For example, if a rotating polar coordinate system is adopted for use in a rotating frame of observation, both rotating at the same constant counterclockwise rate Ω, one can find the equations of motion in this frame as follows: the radial coordinate in the rotating frame is taken as r, but the angle θ' in the rotating frame changes with time
"candidates for using the polar coordinate system" Reworded. — Mets501 18:30, 29 January 2007 (UTC) Under "Modelling", is the equation given a true polar equation or actually a Spherical one? ρ has so far only been mentioned in relation with the spherical coordinate system. Replaced ρ (which was what the ref used as r) with r.
This is a table of orthonormalized spherical harmonics that employ the Condon-Shortley phase up to degree =. Some of these formulas are expressed in terms of the Cartesian expansion of the spherical harmonics into polynomials in x , y , z , and r .
The cylindrical harmonics for (k,n) are now the product of these solutions and the general solution to Laplace's equation is given by a linear combination of these solutions: (,,) = | | (,) (,) where the () are constants with respect to the cylindrical coordinates and the limits of the summation and integration are determined by the boundary ...
In planar dynamics a pole is a center of rotation, the polar is the force line of action and the conic is the mass–inertia matrix. [4] The pole–polar relationship is used to define the center of percussion of a planar rigid body. If the pole is the hinge point, then the polar is the percussion line of action as described in planar screw theory.
The set of coordinates that define the position of a reference point and the orientation of a coordinate frame attached to a rigid body in three-dimensional space form its configuration space, often denoted () where represents the coordinates of the origin of the frame attached to the body, and () represents the rotation matrices that define the orientation of this frame relative to a ground ...