enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling

    In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t {3,6} (as a truncated triangular tiling).

  3. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    The rhombic dodecahedron is a space-filling polyhedron, meaning it can be applied to tessellate three-dimensional space: it can be stacked to fill a space, much like hexagons fill a plane. It is a parallelohedron because it can be space-filling a honeycomb in which all of its copies meet face-to-face. [ 7 ]

  4. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    If a geometric shape can be used as a prototile to create a tessellation, the shape is said to tessellate or to tile the plane. The Conway criterion is a sufficient, but not necessary, set of rules for deciding whether a given shape tiles the plane periodically without reflections: some tiles fail the criterion, but still tile the plane. [19]

  5. Digon - Wikipedia

    en.wikipedia.org/wiki/Digon

    In geometry, a bigon, [1] digon, or a 2-gon, is a polygon with two sides and two vertices.Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visualised in elliptic space.

  6. Uniform tiling - Wikipedia

    en.wikipedia.org/wiki/Uniform_tiling

    In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive. Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra; these can be considered uniform tilings of the sphere.

  7. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

  8. Triangular tiling - Wikipedia

    en.wikipedia.org/wiki/Triangular_tiling

    In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at

  9. Einstein problem - Wikipedia

    en.wikipedia.org/wiki/Einstein_problem

    In plane geometry, the einstein problem asks about the existence of a single prototile that by itself forms an aperiodic set of prototiles; that is, a shape that can tessellate space but only in a nonperiodic way. Such a shape is called an einstein, a word play on ein Stein, German for "one stone". [2]