Search results
Results from the WOW.Com Content Network
In any case, the context and/or unit of the gas constant should make it clear as to whether the universal or specific gas constant is being referred to. [ 10 ] In case of air, using the perfect gas law and the standard sea-level conditions (SSL) (air density ρ 0 = 1.225 kg/m 3 , temperature T 0 = 288.15 K and pressure p 0 = 101 325 Pa ), we ...
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
The partial volume of a particular gas is a fraction of the total volume occupied by the gas mixture, with unchanged pressure and temperature. In gas mixtures, e.g. air, the partial volume allows focusing on one particular gas component, e.g. oxygen.
where P is the pressure, V is the volume, N is the number of gas molecules, k B is the Boltzmann constant (1.381×10 −23 J·K −1 in SI units) and T is the absolute temperature. These equations are exact only for an ideal gas , which neglects various intermolecular effects (see real gas ).
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
In this case, the unit is the centimeter cubed per gram (cm 3 /g or cm 3 ·g −1). To convert m 3 /kg to cm 3 /g, multiply by 1000; conversely, multiply by 0.001. Specific volume is inversely proportional to density. If the density of a substance doubles, its specific volume, as expressed in the same base units, is cut in half.
where V 100 is the volume occupied by a given sample of gas at 100 °C; V 0 is the volume occupied by the same sample of gas at 0 °C; and k is a constant which is the same for all gases at constant pressure. This equation does not contain the temperature and so is not what became known as Charles's Law.
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...