Search results
Results from the WOW.Com Content Network
The horizontal axis shows frequency in Hertz. In acoustics, loudness is the subjective perception of sound pressure.More formally, it is defined as the "attribute of auditory sensation in terms of which sounds can be ordered on a scale extending from quiet to loud". [1]
In music, acoustic waveguide methods, such as a large pipe organ or, for reproduction, exotic loudspeaker designs such as transmission line, rotary woofer, or traditional subwoofer designs can produce low-frequency sounds, including near-infrasound. Subwoofers designed to produce infrasound are capable of sound reproduction an octave or more ...
Loudness: Distant sound sources have a lower loudness than close ones. This aspect can be evaluated especially for well-known sound sources. Sound spectrum: High frequencies are more quickly damped by the air than low frequencies. Therefore, a distant sound source sounds more muffled than a close one, because the high frequencies are attenuated.
Although pitch retrieval mechanisms in the auditory system are still a matter of debate, [76] [115] TFS n information may be used to retrieve the pitch of low-frequency pure tones [75] and estimate the individual frequencies of the low-numbered (ca. 1st-8th) harmonics of a complex sound, [116] frequencies from which the fundamental frequency of ...
The relationship between sound and noise levels is generally described in terms of a signal-to-noise ratio. With a background noise level between 35 and 100 dB, the threshold for 100% intelligibility is usually a signal-to-noise ratio of 12 dB. [3] 12 dB means that the signal should be roughly 4 times louder than the background noise. The ...
Sonority is loosely defined as the loudness of speech sounds relative to other sounds of the same pitch, length and stress, [1] therefore sonority is often related to rankings for phones to their amplitude. [2] For example, pronouncing the vowel [a] will produce a louder sound than the stop [t], so [a] would
Most rooms have their fundamental resonances in the 20 Hz to 200 Hz region, each frequency being related to one or more of the room's dimensions or a divisor thereof. These resonances affect the low-frequency low-mid-frequency response of a sound system in the room and are one of the biggest obstacles to accurate sound reproduction.
The curve is much shallower in the high frequencies than in the low frequencies. This flattening is called upward spread of masking and is why an interfering sound masks high frequency signals much better than low frequency signals. [1] Figure B also shows that as the masker frequency increases, the masking patterns become increasingly compressed.