Ad
related to: sum of angles in parallelogram example problems
Search results
Results from the WOW.Com Content Network
In mathematics, the simplest form of the parallelogram law (also called the parallelogram identity) belongs to elementary geometry. It states that the sum of the squares of the lengths of the four sides of a parallelogram equals the sum of the squares of the lengths of the two diagonals.
The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A l (half linear dimensions yields quarter area), and the area of the parallelogram is A ...
In a parallelogram, where both pairs of opposite sides and angles are equal, this formula reduces to = . Alternatively, we can write the area in terms of the sides and the intersection angle θ of the diagonals, as long θ is not 90° : [ 18 ]
The sum of the angles is the same for every triangle. There exists a pair of similar, but not congruent, triangles. Every triangle can be circumscribed. If three angles of a quadrilateral are right angles, then the fourth angle is also a right angle. There exists a quadrilateral in which all angles are right angles, that is, a rectangle.
A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the sum of the squares of the diagonals (the parallelogram law).
The extended parallelogram sides DE and FG intersect at H. The line segment AH now "becomes" the side of the third parallelogram BCML attached to the triangle side BC, i.e., one constructs line segments BL and CM over BC, such that BL and CM are a parallel and equal in length to AH.
In mechanics, the net force is the sum of all the forces acting on an object. For example, if two forces are acting upon an object in opposite directions, and one force is greater than the other, the forces can be replaced with a single force that is the difference of the greater and smaller force. That force is the net force. [1]
Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. = + In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle).
Ad
related to: sum of angles in parallelogram example problems