Search results
Results from the WOW.Com Content Network
However, not all heteromorphic gametophytes come from heterosporous plants. That is, some plants have distinct egg-producing and sperm-producing gametophytes, but these gametophytes develop from the same kind of spore inside the same sporangium; Sphaerocarpos is an example of such a plant. In seed plants, the microgametophyte is called pollen.
In flowering plants, the gametophytes are very reduced in size, and are represented by the germinated pollen and the embryo sac. The sporophyte produces spores (hence the name) by meiosis, a process also known as "reduction division" that reduces the number of chromosomes in each spore mother cell by half. The resulting meiospores develop into ...
The main difference between spores and seeds as dispersal units is that spores are unicellular, the first cell of a gametophyte, while seeds contain within them a developing embryo (the multicellular sporophyte of the next generation), produced by the fusion of the male gamete of the pollen tube with the female gamete formed by the ...
However, in ferns and their allies there are groups with undifferentiated spores but differentiated gametophytes. For example, the fern Ceratopteris thalictrioides has spores of only one kind, which vary continuously in size. Smaller spores tend to germinate into gametophytes which produce only sperm-producing antheridia. [28]
Heterospory evolved due to natural selection that favoured an increase in propagule size compared with the smaller spores of homosporous plants. [2] Heterosporous plants, similar to anisosporic plants [clarification needed], produce two different sized spores in separate sporangia that develop into separate male and female gametophytes.
Microscopic photo of spores (in red) of Selaginella. The large three spores at the top are megaspores whereas the numerous smaller red spores at the bottom are microspores. Microspores are land plant spores that develop into male gametophytes, whereas megaspores develop into female gametophytes. [1]
The gametophytes grow from haploid spores after sporic meiosis. The existence of a multicellular, haploid phase in the life cycle between meiosis and gametogenesis is also referred to as alternation of generations. It is the biological process of gametogenesis during which cells that are haploid or diploid divide to create other cells.
In all seed plants, spores are produced by meiosis and develop into gametophytes while still inside the sporangium. The microspores become microgametophytes (pollen). The megaspores become megagametophytes (embryo sacs).