Search results
Results from the WOW.Com Content Network
Leonhard Euler proved the Euler product formula for the Riemann zeta function in his thesis Variae observationes circa series infinitas (Various Observations about Infinite Series), published by St Petersburg Academy in 1737. [1] [2]
Frontispiece of the first volume, first edition (1768) of Lettres a une princesse d'Allemagne sur divers sujets de physique & de philosophie. Letters to a German Princess, On Different Subjects in Physics and Philosophy (French: Lettres à une princesse d'Allemagne sur divers sujets de physique et de philosophie) were a series of 234 letters written by the mathematician Leonhard Euler between ...
Leonhard Euler was born on 15 April 1707, in Basel to Paul III Euler, a pastor of the Reformed Church, and Marguerite (née Brucker), whose ancestors include a number of well-known scholars in the classics. [19] He was the oldest of four children, having two younger sisters, Anna Maria and Maria Magdalena, and a younger brother, Johann Heinrich.
In number theory, an Euler product is an expansion of a Dirichlet series into an infinite product indexed by prime numbers. The original such product was given for the sum of all positive integers raised to a certain power as proven by Leonhard Euler .
The 18th-century Swiss mathematician Leonhard Euler (1707–1783) is among the most prolific and successful mathematicians in the history of the field. His seminal work had a profound impact in numerous areas of mathematics and he is widely credited for introducing and popularizing modern notation and terminology.
The Euler function may be expressed as a q-Pochhammer symbol: = (;). The logarithm of the Euler function is the sum of the logarithms in the product expression, each of which may be expanded about q = 0, yielding
The name "Latin square" was inspired by mathematical papers by Leonhard Euler (1707–1783), who used Latin characters as symbols, [2] but any set of symbols can be used: in the above example, the alphabetic sequence A, B, C can be replaced by the integer sequence 1, 2, 3. Euler began the general theory of Latin squares.
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.